소수 데이터만으로 새로운 물체를 정확하게 분류하는 딥러닝 기술 개발

2022-06-22 09:15
  • 카카오톡
  • 네이버 블로그
  • url
작은 정보로 물체를 구별할 수 있는 트랜스포머 기반 퓨샷(few-shot) 인공지능 모델 개발

[보안뉴스 박미영 기자] DGIST 로봇및기계전자공학과 박상현 교수(인공지능전공 겸직) 연구팀은 여러 이미지로부터 상관관계를 학습하는 트랜스포머를 활용해 소수의 정답지를 가진 데이터로 기존 데이터셋에 존재하지 않는 새로운 물체를 정확히 분류하는 퓨샷(few-shot) 분류모델을 개발했다. 학습데이터에 없었던 물체를 인식하기 위해 대규모 데이터셋 구축을 필요로 했던 기존 딥러닝 모델 학습의 효율성 향상에 획기적인 기여가 기대된다.


[사진=DGIST]

일반적으로 높은 성능의 딥러닝 분류모델을 훈련하기 위해서는 대규모 데이터셋을 구축해야 한다. 각 항목마다 수백에서 수천장의 영상을 모으고 영상 간의 연결성의 유무를 구분하는 레이블링 작업을 진행해야 하기 때문에 오랜 시간과 많은 비용이 발생한다. 이러한 문제를 해결하기 위해 소수의 데이터만으로도 새로운 물체를 분류하는 퓨샷(few-shot) 모델이 활발하게 연구되고 있다. 현재 소수의 레이블링이 있는 서포트(support) 데이터들 간의 상관관계를 분석하는 트랜스포머나 픽셀 단위의 영상 비교 기법들이 제안됐으나 성능 향상이 제한적이다.

이에 박상현 교수팀은 소수의 레이블링이 있는 서포트 데이터(Support)가 주어졌을 때 분류해야 하는 영상(Query)에서 추출된 특징들을 효과적으로 비교할 수 있는 기법을 새롭게 제안했다. 박상현 교수 연구팀은 데이터 사이 상관관계를 보여주는 ‘Attention Map’을 활용해 특정 패턴을 갖는 유사한 데이터를 모아 평균화시킨 특징 벡터를 변환하는 트랜스포머(Transformer)를 활용한 모델을 개발했다.

기존 기법들과 달리 양방향(Support에서 Query로, Query에서 Support로)으로 특징을 변환해 효과적으로 특징 벡터를 비교할 수 있는 방법을 고안했다. 이를 통해 영상에서 추출한 특징 벡터들이 서로 비교하기 적합한 새로운 벡터 공간으로 변환돼 분류 성능이 크게 개선됐다.

새롭게 개발한 딥러닝 모델은 퓨샷 분류 문제에 있어 1~5개의 데이터만으로 최대 84~94%의 정확도를 보였으며, 기존에 제안됐던 다른 퓨샷 학습 기법들의 성능을 크게 웃돌았다.

박상현 교수는 “이번 연구를 통해 개발한 모델은 퓨샷 분류 성능을 크게 개선시켰으며 이를 통해 딥러닝 모델 학습의 효율성 향상에 기여할 수 있을 것으로 기대된다”며, “향후 관련 기술을 좀 더 개선한다면 다양한 분류 문제에 범용적으로 활용될 수 있을 것”이라고 말했다.

한편, 이번 연구 결과는 그 우수성을 인정받아 인공지능 관련 분야 최우수 국제학술지 ‘IEEE Conference on Computer Vision and Pattern Recognition’에 6월 게재됐다.
[박미영 기자(mypark@boannews.com)]

<저작권자: 보안뉴스(www.boannews.com) 무단전재-재배포금지>

헤드라인 뉴스

TOP 뉴스

이전 스크랩하기


과월호 eBook List 정기구독 신청하기

    • 가시

    • 인콘

    • 엔텍디바이스코리아

    • 핀텔

    • KCL

    • 아이디스

    • 씨프로

    • 웹게이트

    • 엔토스정보통신

    • 하이크비전

    • 한화비전

    • ZKTeco

    • 비엔에스테크

    • 아이리스아이디

    • 원우이엔지

    • 지인테크

    • 홍석

    • 이화트론

    • 다누시스

    • 테크스피어

    • 프로브디지털

    • 슈프리마

    • 인텔리빅스

    • 시큐인포

    • 미래정보기술(주)

    • 비전정보통신

    • 지오멕스소프트

    • HS효성인포메이션시스템

    • 인터엠

    • 위트콘

    • 성현시스템

    • 동양유니텍

    • 투윈스컴

    • 스피어AX

    • 다후아테크놀로지코리아

    • 한결피아이에프

    • 경인씨엔에스

    • 디비시스

    • 트루엔

    • 세연테크

    • 아이원코리아

    • 유니뷰

    • 포엠아이텍

    • 넥스트림

    • 아이닉스

    • 아이리스아이디

    • 펜타시큐리티

    • 셀파인네트웍스

    • 지코어코리아

    • 시큐아이

    • 신우테크
      팬틸드 / 하우징

    • 에프에스네트워크

    • 엣지디엑스

    • 케이제이테크

    • 알에프코리아

    • (주)일산정밀

    • 아이엔아이

    • 미래시그널

    • 새눈

    • 네티마시스템

    • 유투에스알

    • 주식회사 에스카

    • 한국아이티에스

    • 케비스전자

    • 레이어스

    • 지에스티엔지니어링
      게이트 / 스피드게이트

    • 에이앤티글로벌

    • 이스트컨트롤

    • 현대틸스
      팬틸트 / 카메라

    • 제네텍

    • 넥스텝

    • 티에스아이솔루션

    • 에이티앤넷

    • 구네보코리아주식회사

    • 엘림광통신

    • 한국씨텍

    • 포커스에이치앤에스

    • 이엘피케이뉴

    • 휴젠

    • 신화시스템

    • 글로넥스

    • 메트로게이트
      시큐리티 게이트

    • 세환엠에스(주)

    • 유진시스템코리아

    • 카티스

    • 유니온커뮤니티

Copyright thebn Co., Ltd. All Rights Reserved.

MENU

회원가입

Passwordless 설정

PC버전

닫기